Combining Image Classification and Unmanned Aerial Vehicles to Estimate the State of Explorer Roses

Author:

Herrera David1,Escudero-Villa Pedro2ORCID,Cárdenas Eduardo3,Ortiz Marcelo3,Varela-Aldás José1ORCID

Affiliation:

1. Centro de Investigaciones de Ciencias Humanas y de la Educación (CICHE), Universidad Indoamérica, Av. Manuela Sáenz y Agramonte, Ambato 180103, Ecuador

2. Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador

3. Artil Labs Research Group, Artil Robotics, Av Quiz quiz y Sevilla, Ambato 180102, Ecuador

Abstract

The production of Explorer roses has historically been attractive due to the acceptance of the product around the world. This species of roses presents high sensitivity to physical contact and manipulation, creating a challenge to keep the final product quality after cultivation. In this work, we present a system that combines the capabilities of intelligent computer vision and unmanned aerial vehicles (UAVs) to identify the state of roses ready for cultivation. The system uses a deep learning-based approach to estimate Explorer rose crop yields by identifying open and closed rosebuds in the field using videos captured by UAVs. The methodology employs YOLO version 5, along with DeepSORT algorithms and a Kalman filter, to enhance counting precision. The evaluation of the system gave a mean average precision (mAP) of 94.1% on the test dataset, and the rosebud counting results obtained through this technique exhibited a strong correlation (R2 = 0.998) with manual counting. This high accuracy allows one to minimize the manipulation and times used for the tracking and cultivation process.

Funder

Universidad Indoamérica

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3