Navigating the future: exploring technological advancements and emerging trends in the sustainable ornamental industry

Author:

Wani Muneeb Ahmad,Din Ambreena,Nazki Imtiyaz Tahir,Rehman Tanzeel U.,Al-Khayri Jameel M.,Jain Shri Mohan,Lone Raiz Ahmed,Bhat Zahoor Ahmad,Mushtaq Muntazir

Abstract

Technological advances have played a critical role in the production of flower crops, enabling farmers to maximize yields and reduce losses while also improving the quality of flowers. These advances have included the development of new breeding techniques, such as molecular marker-assisted breeding, and the use of modern technologies like high-throughput phenotyping to identify and select superior cultivars. In addition, precision farming techniques, such as the use of sensors and remote monitoring systems, have made it possible to closely monitor crop growth and optimize inputs like water and fertilizer, leading to higher yields and improved resource efficiency. Advancements in biotechnology have also resulted in the development of transgenic plants that are resistant to pests and diseases, reducing the need for chemical pesticides and improving plant health. Modern molecular genetic tools, particularly genome editing with CRISPR/Cas9 nucleases, are emerging in addition to conventional approaches of investigating these plants. Furthermore, the use of novel growing systems, such as hydroponics and vertical farming, has allowed for year-round flower production in controlled environments, mitigating the challenges associated with seasonal changes and climate variability. These innovations have also made it possible to produce high-quality flowers in urban areas, bringing fresh blooms closer to consumers. Overall, technological advances in flower crops have revolutionized the floriculture industry, enabling growers to produce high-quality flowers in a more sustainable and efficient manner. These advancements have not only improved the productivity and profitability of flower farming but have also contributed to the conservation of natural resources and the protection of the environment.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3