Evaluating the Performance of Flexible, Semi-Transparent Large-Area Organic Photovoltaic Arrays Deployed on a Greenhouse

Author:

Waller Rebekah,Kacira MuratORCID,Magadley Esther,Teitel MeirORCID,Yehia Ibrahim

Abstract

Agricultural greenhouses have been identified as a niche application for organic photovoltaic (OPV) integration, leveraging key performance characteristics of OPV technology, including semi-transparency, light weight, and mechanical flexibility. For optimal electrical design and performance assessment of greenhouse-integrated OPV systems, knowledge of the solar irradiance incident on OPV module surfaces is essential. Many greenhouse designs feature roof curvature. For flexible OPV modules deployed on curved greenhouse roofs, this results in a non-homogenous distribution of solar radiation across the module surfaces, which affects electrical output. Conventional modeling methods for estimating solar irradiance on a PV surface assume planarity, and therefore they are insufficient to evaluate OPV (and other flexible PV) installations on curved greenhouse structures. In this study, practical methods to estimate incident solar irradiance on curved surfaces were developed and then applied in an outdoor performance evaluation of large-area, roll-to-roll printed OPV arrays (3.4 m2 active area) installed on a gothic-arch greenhouse roof in Tucson, Arizona between October–February. The outdoor performance of six OPV arrays was assessed using the curved-surface modeling tools primarily considering the effect of irradiance on electrical behavior. The OPV arrays had an overall power conversion efficiency (PCE) of 1.82%, with lower PCE in the afternoon periods compared to morning and midday periods. The OPV arrays experienced an average 32.6% loss in normalized PCE over the course of the measurement period. Based on these results, we conclude that the higher performing OPV devices that are more robust in outdoor conditions coupled with accurate performance monitoring strategies are needed to prove the case for agrivoltaic OPV greenhouses.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3