Makeup Water Addition Can Affect the Growth of Scenedesmus dimorphus in Photobioreactors

Author:

Osabutey Augustina1ORCID,Haleem Noor12ORCID,Uguz Seyit3ORCID,Albert Karlee L.4,Anderson Gary A.1,Min Kyungnan5,Yang Xufei1

Affiliation:

1. Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA

2. Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan

3. Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle 16240, Bursa, Turkey

4. Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA

5. Civil and Environmental Engineering, South Dakota State University, Brookings, SD 57007, USA

Abstract

Makeup water constitutes a key component in the water management of microalgal cultivation systems. However, the effect of makeup water addition on microalgal growth remains largely unexplored. This study compared two deionized water addition intervals (1 day and 4 days) for their effect on the growth of Scenedesmus dimorphus (S. dimorphus hereafter) in 2000 mL Pyrex bottles under controlled conditions. Cell counts and dry algal biomass (DAB) were measured to characterize the microalgal growth rate. Water addition intervals impacted algal cell counts but had little effect on DAB. Adding makeup water every day resulted in a higher growth rate (8.80 ± 1.46 × 105 cells mL−1 day−1; p = 0.22, though) and an earlier occurrence of the peak cell count (day 9) than adding it every 4 days (6.95 ± 1.68 × 105 cells mL−1 day−1 and day 12, respectively). It is speculated that water loss over an extended period and the following makeup water addition posed stress on S. dimorphus. Surpassing the peak cell count, S. dimorphus continued to grow in DAB, resulting in an increased cell weight as a response to nutrient starvation. Optical density at 670 nm (OD670) was also measured. Its correlation with DAB was found to be affected by water addition intervals (R2 = 0.955 for 1 day and 0.794 for 4 days), possibly due to a water loss-induced change in chlorophyll a content. This study is expected to facilitate the makeup water management of photobioreactor and open pond cultivation systems.

Funder

U.S. Department of Agriculture NIFA Hatch

Multistate Hatch Projects

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Horticulture,Food Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3