Hardware-Aware Design of Speed-Up Algorithms for Synthetic Aperture Radar Ship Target Detection Networks

Author:

Zhang Yue12,Jiang Shuai1,Cao Yue12ORCID,Xiao Jiarong1,Li Chengkun12,Zhou Xuan1,Yu Zhongjun12ORCID

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Recently, synthetic aperture radar (SAR) target detection algorithms based on Convolutional Neural Networks (CNN) have received increasing attention. However, the large amount of computation required burdens the real-time detection of SAR ship targets on resource-limited and power-constrained satellite-based platforms. In this paper, we propose a hardware-aware model speed-up method for single-stage SAR ship targets detection tasks, oriented towards the most widely used hardware for neural network computing—Graphic Processing Unit (GPU). We first analyze the process by which the task of detection is executed on GPUs and propose two strategies according to this process. Firstly, in order to speed up the execution of the model on a GPU, we propose SAR-aware model quantification to allow the original model to be stored and computed in a low-precision format. Next, to ensure the loss of accuracy is negligible after the acceleration and compression process, precision-aware scheduling is used to filter out layers that are not suitable for quantification and store and execute them in a high-precision mode. Trained on the dataset HRSID, the effectiveness of this model speed-up algorithm was demonstrated by compressing four different sizes of models (yolov5n, yolov5s, yolov5m, yolov5l). The experimental results show that the detection speeds of yolov5n, yolov5s, yolov5m, and yolov5l can reach 234.7785 fps, 212.8341 fps, 165.6523 fps, and 139.8758 fps on the NVIDIA AGX Xavier development board with negligible loss of accuracy, which is 1.230 times, 1.469 times, 1.955 times, and 2.448 times faster than the original before the use of this method, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3