Abstract
Recently, deep learning has greatly promoted the development of detection methods for ship targets in synthetic aperture radar (SAR) images. However, existing detection networks are mostly based on large-scale models and high-cost computations, which require high-performance computing equipment to realize real-time processing and limit their hardware transplantation to onboard platforms. To address this problem, a lightweight ship detection network via YOLOX-s is proposed in this paper. Firstly, we remove the computationally heavy pyramidal structure and build a streamlined network based on a one-level feature for higher detection efficiency. Secondly, to expand the limited receptive field and enhance the semantic information of a single-feature map, a residual asymmetric dilated convolution (RADC) block is proposed. Through four branches with different dilation rates, the RADC block can help the detector to capture various ships in complex backgrounds. Finally, to tackle the imbalance problem between ships of different scales in the training stage, we put forward a balanced label assignment strategy called center-based uniform matching. To verify the effectiveness of the proposed method, we conduct extensive experiments on the SAR Ship Detection Dataset (SSDD) and High-Resolution SAR Images Dataset (HRSID). The results show that our method can achieve comparable performance to general detection networks with much less computational cost.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献