Improved Gravity Inversion Method Based on Deep Learning with Physical Constraint and Its Application to the Airborne Gravity Data in East Antarctica

Author:

Wu Guochao12ORCID,Wei Yue3,Dong Siyuan3,Zhang Tao124ORCID,Yang Chunguo12,Qin Linjiang12,Guan Qingsheng12

Affiliation:

1. Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

2. Key Laboratory of Submarine Geosciences, Ministry of Natural Resources, Hangzhou 310012, China

3. College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China

4. Donghai Laboratory, Zhoushan 316000, China

Abstract

This paper aims to solve the limitations of traditional gravity physical property inversion methods such as insufficient depth resolution and difficulties in parameter selection, by proposing an improved 3D gravity inversion method based on deep learning. The deep learning network model is established using the fully convolutional U-net network. To enhance the generalization ability of the sample set, the large-scale training set and test set are generated by the random walk, based on the forward theory. Founded on the traditional loss function’s definition, this paper introduces an improvement incorporating a physical constraint to measure the degree of data fitting between the predicted and the real gravity data. This improvement significantly boosted the accuracy of the deep learning inversion method, as verified through both a single model and an intricate combination model. Finally, we applied this improved inversion method to the gravity data from the Gamburtsev Subglacial Mountains in the interior of East Antarctica, obtaining a comprehensive 3D crustal density structure. The results provide new evidence for the presence of a dense crustal root situated beneath the central Gamburtsev Province near the Gamburtsev Suture.

Funder

Scientific Research Fund of the Second Institute of Oceanography

Fundamental Research Funds for the National Natural Science Foundation of China

program of Impact and Response of Antarctic Seas to Climate Change

Science Foundation of Donghai Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3