Historical development of the gravity method in exploration

Author:

Nabighian M. N.12345,Ander M. E.12345,Grauch V. J. S.12345,Hansen R. O.12345,LaFehr T. R.12345,Li Y.12345,Pearson W. C.12345,Peirce J. W.12345,Phillips J. D.12345,Ruder M. E.12345

Affiliation:

1. Colorado School of Mines, 1500 Illinois St., Golden, Colorado, 80401-1887.

2. Ander Laboratory LLC, 3604 Aspen Creek Parkway, Austin, Texas 78749.

3. U. S. Geological Survey, Box 25046, Federal Center MS 964, Denver, Colorado 80225.

4. PRJ Inc., 12640 W. Cedar Dr., Suite 100, Lakewood, Colorado 80228.

5. Colorado School of Mines (retired), 1500 Illinois Street, Golden, Colorado 80401-1887.

Abstract

The gravity method was the first geophysical technique to be used in oil and gas exploration. Despite being eclipsed by seismology, it has continued to be an important and sometimes crucial constraint in a number of exploration areas. In oil exploration the gravity method is particularly applicable in salt provinces, overthrust and foothills belts, underexplored basins, and targets of interest that underlie high-velocity zones. The gravity method is used frequently in mining applications to map subsurface geology and to directly calculate ore reserves for some massive sulfide orebodies. There is also a modest increase in the use of gravity techniques in specialized investigations for shallow targets. Gravimeters have undergone continuous improvement during the past 25 years, particularly in their ability to function in a dynamic environment. This and the advent of global positioning systems (GPS) have led to a marked improvement in the quality of marine gravity and have transformed airborne gravity from a regional technique to a prospect-level exploration tool that is particularly applicable in remote areas or transition zones that are otherwise inaccessible. Recently, moving-platform gravity gradiometers have become available and promise to play an important role in future exploration. Data reduction, filtering, and visualization, together with low-cost, powerful personal computers and color graphics, have transformed the interpretation of gravity data. The state of the art is illustrated with three case histories: 3D modeling of gravity data to map aquifers in the Albuquerque Basin, the use of marine gravity gradiometry combined with 3D seismic data to map salt keels in the Gulf of Mexico, and the use of airborne gravity gradiometry in exploration for kimberlites in Canada.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3