Changes Induced by Self-Burning in Technosols from a Coal Mine Waste Pile: A Hydropedological Approach

Author:

Espinha Marques JorgeORCID,Martins Vítor,Santos PatríciaORCID,Ribeiro JoanaORCID,Mansilha CatarinaORCID,Melo ArmindoORCID,Rocha FernandoORCID,Flores DeolindaORCID

Abstract

Coal mining originates environmental impacts on soil and water bodies, including the leaching of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in mine waste piles. This research aims to identify and characterize changes induced by self-burning in Technosols from a coal mine waste pile by means of a comprehensive hydropedological assessment encompassing geochemical, mineralogical, and hydrological data, bearing in mind the potential leaching of PTEs and PAHs. The soil profile from two contiguous areas (an area with normal pedological evolution vs. an area affected by self-burning) was characterized in terms of morphological features. Each soil horizon was sampled and analyzed for geochemical and mineralogical characterization. The unsaturated hydraulic conductivity (Ki) was also measured in all soil horizons. Finally, the leaching potential of PTEs and PAHs in water was evaluated. Several changes induced by self-burning were identified in the studied Technosols: development of specific soil horizons; destruction of humified organic matter; contrasting geochemical composition, especially in the deeper horizons; mineralogical modifications, pointing to clay minerals with higher ion exchange capacity and higher specific surface by sulphates of lower structural order; diverse Ki values in the intermediate and lower part of the soil profile; and specific susceptibility to leaching of PTEs and PAHs. The research demonstrated that self-burning causes severe changes of hydropedological relevance, with influence on the leaching of PTEs and PAHs.

Funder

Portuguese Science and Technology Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3