Assessment of ecotoxicological effects of Fojo coal mine waste elutriate in aquatic species (Douro Coalfield, North Portugal)

Author:

Narayan Aracelis,Diogo Bárbara S.,Mansilha Catarina,Espinha Marques Jorge,Flores Deolinda,Antunes Sara C.

Abstract

Introduction: The exploitation of anthracite A in the Pejão mining complex (Douro Coalfield, North Portugal) resulted in the formation of several coal waste piles without proper environmental control. In 2017, a new pedological zonation emerged in the Fojo area, after the ignition and self-burning of some of the coal waste piles, namely: unburned coal waste (UW); burned coal waste, and a cover layer (BW and CL, respectively); uphill soil (US); mixed burned coal waste (MBW); downhill soil (DS). This study aimed to evaluate the toxic effects of 25 soil elutriates from different pedological materials.Methods:Allivibrio fischeri bioluminescence inhibition assay, Lemna minor growth inhibition assay, and Daphnia magna acute assay were used to assess the toxicity effects. Additionally, total chlorophyll and malondialdehyde (MDA) content and catalase (CAT) activity were also evaluated in L. minor.Results and Discussion: The results obtained from each endpoint demonstrated the extremely heterogeneous nature of soil properties, and the species showed different sensibilities to soil elutriates, however, in general, the species showed the same sensitivity trend (A. fischeri > L. minor > D. magna). The potentially toxic elements (PTE) present in the soil elutriates (e.g., Al, Pb, Cd, Ni, Zn) affected significantly the species understudy. All elutriates revealed toxicity for A. fischeri, while US1 and UW5 were the most toxic for L. minor (growth inhibition and significant alterations in CAT activity) and D. magna (100% mortality). This study highlights the importance of studying soil aqueous phase toxicity since the mobilization and percolation of bioavailable PTE can cause environmental impacts on aquatic ecosystems and biota.

Funder

Fundação para a Ciência e a Tecnologia

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3