Abstract
The goal of this research was to characterize the impact of invasive riparian vegetation on burn severity patterns and fluvial topographic change in an urban Mediterranean riverine system (Med-sys) after fire in San Diego, California. We assessed standard post-fire metrics under urban conditions with non-native vegetation and utilized field observations to quantify vegetation and fluvial geomorphic processes. Field observations noted both high vegetation loss in the riparian area and rapidly resprouting invasive grass species such as Arundo donax (Giant Reed) after fire. Satellite-based metrics that represent vegetation biomass underestimated the initial green canopy loss, as did volumetric data derived from three-dimensional terrestrial laser scanning data. Field measurements were limited to a small sample size but demonstrated that the absolute maximum topographic changes were highest in stands of Arundo donax (0.18 to 0.67 m). This work is the first quantification of geomorphic alterations promoted by non-native vegetation after fire and highlights potential grass–fire feedbacks that can contribute to geomorphic disruption. Our results support the need for ground-truthing or higher resolution when using standard satellite-based indices to assess post-fire conditions in urban open spaces, especially when productive invasive vegetation are present, and they also emphasize restoring urban waterways to native vegetation conditions.
Funder
National Science Foundation
Council on Ocean Affairs Science and Technology, California State University
Subject
General Earth and Planetary Sciences
Reference84 articles.
1. Wildfire, water, and society: Toward integrative research in the “Anthropocene”
2. HUMAN INFLUENCE ON CALIFORNIA FIRE REGIMES
3. Chaparral Landscape Conversion in Southern California;Syphard,2018
4. Introduction to Wildfire;Pyne,1996
5. The La Crescenta flood;Kraebel;Am. For.,1934
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献