A New Application of the Disturbance Index for Fire Severity in Coastal Dunes

Author:

DaSilva Marcio D.ORCID,Bruce DavidORCID,Hesp Patrick A.ORCID,Miot da Silva Graziela

Abstract

Fires are a disturbance that can lead to short term dune destabilisation and have been suggested to be an initiation mechanism of a transgressive dune phase when paired with changing climatic conditions. Fire severity is one potential factor that could explain subsequent coastal dune destabilisations, but contemporary evidence of destabilisation following fire is lacking. In addition, the suitability of conventional satellite Earth Observation methods to detect the impacts of fire and the relative fire severity in coastal dune environments is in question. Widely applied satellite-derived burn indices (Normalised Burn Index and Normalised Difference Vegetation Index) have been suggested to underestimate the effects of fire in heterogenous landscapes or areas with sparse vegetation cover. This work assesses burn severity from high resolution aerial and Sentinel 2 satellite imagery following the 2019/2020 Black Summer fires on Kangaroo Island in South Australia, to assess the efficacy of commonly used satellite indices, and validate a new method for assessing fire severity in coastal dune systems. The results presented here show that the widely applied burn indices derived from NBR differentially assess vegetation loss and fire severity when compared in discrete soil groups across a landscape that experienced a very high severity fire. A new application of the Tasselled Cap Transformation (TCT) and Disturbance Index (DI) is presented. The differenced Disturbance Index (dDI) improves the estimation of burn severity, relative vegetation loss, and minimises the effects of differing soil conditions in the highly heterogenous landscape of Kangaroo Island. Results suggest that this new application of TCT is better suited to diverse environments like Mediterranean and semi-arid coastal regions than existing indices and can be used to better assess the effects of fire and potential remobilisation of coastal dune systems.

Funder

Flinders University

Department of Environment and Water, South Australia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3