Comparison of Forest Restorations with Different Burning Severities Using Various Restoration Methods at Tuqiang Forestry Bureau of Greater Hinggan Mountains

Author:

Zhao Guangshuai1,Xu Erqi2ORCID,Yi Xutong1,Guo Ye1,Zhang Kun1

Affiliation:

1. Development Research Center, National Forestry and Grassland Administration, Beijing 100714, China

2. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China

Abstract

Forest disturbances and restoration are key processes in carbon transmission between the terrestrial surface and the atmosphere. In boreal forests, fire is the most common and main disturbance. The reconstruction process for post-disaster vegetation plays an essential role in the restoration of a forest’s structure and function, and it also maintains the ecosystem’s health and stability. Remote sensing monitoring could reflect dynamic post-fire features of vegetation. However, there are still major differences in the remote sensing index in terms of regional feasibility and sensibility. In this study, the largest boreal primary coniferous forest area in China, the Greater Hinggan Mountains forest area, was chosen as the sampling area. Based on time series data from Landsat-5 TM surface reflectance (SR) and data obtained from sample plots, the burned area was extracted using the Normalized Burn Ratio (NBR). We used the pre- and post-fire difference values (dNBR) and compared them with survey data to classify the burn severity level. The Normalized Difference Vegetation Index (NDVI) (based on spectrum combination) and the Disturbance Index (DI) (based on Tasseled-Cap transformation) were chosen to analyze the difference in the degree of burn severity and vegetation restoration observed using various methods according to the sequential variation feature from 1986 to 2011. The results are as follows: (1) The two remote sensing indexes are both sensitive to fire and the burn severity level. When a fire occurred, the NDVI value for that year decreased dramatically while the DI value increased sharply. Alongside these findings, we observed that the rangeability and restoration period of the two indexes is significantly positively correlated with the degree of burn severity. (2) According to these two indexes, natural vegetation restoration was faster than the restoration achieved using artificial methods. However, compared with the NDVI, the DI showed a clearer improvement in restoration, as the restoration period the DI could evaluate was longer in two different ways: the NDVI illustrated great changes in the burn severity in the 5 years post-fire, while the DI was able to show the changes for more than 20 years. Additionally, from the DI, one could identify felling activities carried out when the artificial restoration methods were initially applied. (3) From the sample-plot data, there were few differences in forest canopy density—the average was between 0.55 and 0.6—between the diverse severity levels and restoration methods after 33 years of recovery. The average diameter at breast height (DBH) and height values of trees in naturally restored areas decreased with the increase in burn severity, but the values were obviously higher than those in artificially restored areas. This indicates that both the burn severity level and restoration methods have important effects on forest restoration, but the results may also have been affected by other factors.

Funder

Monitoring and Assessment of the Socio-economic Impacts of China’s Key Forestry Programs

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3