Abstract
Dynamic metasomatism experiments were performed by reacting a lamproite melt with garnet peridotite by drawing melt through the peridotite into a vitreous carbon melt trap, ensuring the flow of melt through the peridotite and facilitating analysis of the melt. Pressure (2–3 GPa) and temperature (1050–1125 °C) conditions were chosen where the lamproite was molten but the peridotite was not. Phlogopite was formed and garnet and orthopyroxene reacted out, resulting in phlogopite wehrlite (2 GPa) and phlogopite harzburgite (3 GPa). Phlogopites in the peridotite have higher Mg/(Mg + Fe) and Cr2O3 and lower TiO2 than in the lamproite due to buffering by peridotite minerals, with Cr2O3 from the elimination of garnet. Compositional trends in phlogopites in the peridotite are similar to those in natural garnet peridotite xenoliths in kimberlites. Changes in melt composition resulting from the reaction show decreased TiO2 and increased Cr2O3 and Mg/(Mg + Fe). The loss of phlogopite components during migration through the peridotite results in low K2O/Na2O and K/Al in melts, indicating that chemical characteristics of lamproites are lost through reaction with peridotite so that emerging melts would be less extreme in composition. This indicates that lamproites are unlikely to be derived from a source rich in peridotite, and more likely originate in a source dominated by phlogopite-rich hydrous pyroxenites. Phlogopites from an experiment in which lamproite and peridotite were intimately mixed before the experiment did not produce the same phlogopite compositions, showing that care must be taken in the design of reaction experiments.
Funder
Deutsche Forschungsgemeinschaft
Australian Research Council
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献