Discovery of Variscan orogenic peridotites in the Pelvoux Massif (Western Alps, France)

Author:

Jacob Jean-BaptisteORCID,Janots Emilie,Cordier CaroleORCID,Guillot Stéphane

Abstract

Small bodies of mantle-derived peridotites and other ultramafic rocks are commonly found in exhumed lower crustal units of collisional orogens. They provide a direct record of the complex evolution of the upper mantle before and during an orogeny, and are therefore key markers of the geodynamic evolution of an orogen. We report here the discovery of such mantle-derived peridotites, which occur as fragmented enclaves in migmatites of the high-grade Variscan lower crust exposed in the Pelvoux Massif (external Western Alps). A wide petrographic diversity has been observed, from very fertile, garnet-bearing lherzolites, to more depleted spinel/chromite-bearing harzburgites. Thermobarometric calculations on a garnet lherzolite indicate an initial stage at 3.0–4.0 GPa and 970–1140 °C, followed by exhumation to 0.8–1.3 GPa and 800–850 °C, while the harzburgites do not show any evidence of equilibration in the garnet field. Petrological observations, whole-rock geochemistry and in situ mineral compositions suggest the peridotites have undergone a complex history prior to their incorporation in the lower crust during the Variscan Orogeny. They derive from a refractory mantle, which has experienced variable degrees of melt depletion, and has then been extensively refertilized. Cryptic metasomatism is observed in all samples. It is characterized by an enrichment in large-ion lithophile elements (LILE, in particular Cs, Rb, U and Pb) relative to high field strength elements (HFSE), in particular Nb and Ta. This cryptic metasomatism is presumably related to percolation of subduction-related fluids or melts in the mantle. In addition, modal metasomatism occurred in some samples, where crystallization of phlogopite, pargasite, chromite and apatite has been observed. This modal metasomatism resulted in significant enrichment in K2O, P2O5 and Cr2O3 of the bulk rock, together with a strong enrichment in incompatible LREE relative to HREE. These geochemical characteristics are strikingly similar to that of syn-collisional, Mg–Cr–LILE rich mantle-derived (ultra)-potassic magmas such as durbachites and vaugnerites, which are ubiquitous in the Variscan metamorphic allochthons of Massif Central, external Alps, Vosges and Bohemian Massif. We therefore suggest that this metasomatism results from dynamic percolation of the peridotites by K2O–P2O5–Cr2O3-rich melts from which the durbachites and vaugnerites are primarily derived. These geochemical characteristics are in line with whole-rock Nd isotopic compositions, which indicate enrichment of the mantle by a continental crust component, presumably related to Variscan subductions. This evolution is consistent with that of other Variscan peridotites in the Eastern Alps (Ulten) and the Bohemian Massif, where multiple metasomatic episodes related to melts or fluids released in Variscan subduction zones have been documented.

Funder

Bureau de Recherches Géologiques et Minières (BRGM), projet "RGF Alpes et Bassins Périphériques"

Publisher

EDP Sciences

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3