A Machine Learning-Driven Approach to Uncover the Influencing Factors Resulting in Soil Mass Displacement

Author:

Parasyris Apostolos1ORCID,Stankovic Lina1ORCID,Stankovic Vladimir1ORCID

Affiliation:

1. Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK

Abstract

For most landslides, several destabilising processes act simultaneously, leading to relative sliding along the soil or rock mass surface over time. A number of machine learning approaches have been proposed recently for accurate relative and cumulative landside displacement prediction, but researchers have limited their studies to only a few indicators of displacement. Determining which influencing factors are the most important in predicting different stages of failure is an ongoing challenge due to the many influencing factors and their inter-relationships. In this study, we take a data-driven approach to explore correlations between various influencing factors triggering slope movement to perform dimensionality reduction, then feature selection and extraction to identify which measured factors have the strongest influence in predicting slope movements via a supervised regression approach. Further, through hierarchical clustering of the aforementioned selected features, we identify distinct types of displacement. By selecting only the most effective measurands, this in turn informs the subset of sensors needed for deployment on slopes prone to failure to predict imminent failures. Visualisation of the important features garnered from correlation analysis and feature selection in relation to displacement show that no one feature can be effectively used in isolation to predict and characterise types of displacement. In particular, analysis of 18 different sensors on the active and heavily instrumented Hollin Hill Landslide Observatory in the north west UK, which is several hundred metres wide and extends two hundred metres downslope, indicates that precipitation, atmospheric pressure and soil moisture should be considered jointly to provide accurate landslide prediction. Additionally, we show that the above features from Random Forest-embedded feature selection and Variational Inflation Factor features (Soil heat flux, Net radiation, Wind Speed and Precipitation) are effective in characterising intermittent and explosive displacement.

Funder

EPSRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3