Abstract
The application of limit equilibrium analysis and numerical simulation in case of slope instability is described. The purpose of the study was to use both limit equilibrium methods (LEMs) and numerical simulations (finite element method (FEM)) to understanding the common factor imposing the selected slope into slope instabilities. Field observations, toppling analysis, rotational analysis, and numerical simulations were performed. The results of the study showed that the selected unstable slopes were associated with the sliding types of toppling; it was observed that the slopes were governed by tension cracks and layered soil mass and dominated with approximately two joints sets throughout. The simulated factor of safety (FoS) of the slopes composed of clay soil was denoted to be prone to slope instability while others were categorized as moderately stable. The simulated FoS of the slopes correlated very well with the visual observations; however, it is anticipated that properties of soil mass and other characteristics of the slopes contributed largely to the simulated FoS. The sensitivity of the model was further tested by looking into the effect of the slope angle on the stability of the slope. The results of the simulations showed that the steeper the slope, the more they become prone to instability. Lastly, Phase 2 numerical simulation (FEM) showed that volumetric strain, shear stress, shear strain, total displacement, and σ1 and σ3 components of the slope increase with the stages of the road construction. It was concluded improper road construction, steepness of the slope, slope properties (soil types), and multiple geological features cutting across are the common mechanisms behind the slope instability.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献