Suitability of Screened Monitoring Wells for Temperature Measurements Regarding Large-Scale Geothermal Collector Systems

Author:

Bertermann DavidORCID,Rammler Mario

Abstract

Groundwater temperature (GWT) is usually measured using screened monitoring wells (MWs). The aim of this study was to investigate whether MWs are suitable for monitoring the effects of large-scale geothermal collector systems (LSCs) on GWT, focusing on possible vertical flows within the MWs due to both natural and forced convection. Comparative temperature depth profiles were therefore recorded over a period of nine months in both shallow MWs and in small-diameter, non-screened temperature monitoring stations (TMSs), each of which was installed in a single borehole. Particularly high temperature deviations were measured in MWs in the upper part of the water column where the GWT reached up to 1.8 K warmer than in the surrounding subsurface. These deviations correlate unambiguously with the prevailing positive thermal gradients and are caused by thermal convection. Where forced convection occurred, the GWT was measured to be up to 0.8 K colder. Potential temperature deviations must be considered when monitoring very shallow GWT as thermal gradients can be particularly high in these zones. For monitoring concepts of LSCs, a combination of MW and TMS is proposed for GWT measurements decoupled by the effects of convection and in order to enable further investigations such as pumping tests.

Funder

Federal Ministry of Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3