Influence of Groundwater on the Very Shallow Geothermal Potential (vSGP) in the Area of a Large-Scale Geothermal Collector System (LSC)

Author:

Rammler Mario1,Zeh Robin2,Bertermann David1ORCID

Affiliation:

1. GeoZentrum Nordbayern, Department Geographie und Geowissenschaften, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany

2. Department of Energy and Building, Technische Hochschule Nürnberg Georg Simon Ohm, 90489 Nürnberg, Germany

Abstract

The water balance in the very shallow subsurface can be influenced by capillary rise due to a high groundwater table. Since moisture content is an important factor for the thermal conductivity of soils, this can also have an influence on the very shallow geothermal potential (vSGP). For this reason, the effect of spatial and seasonal variations in groundwater tables on moisture content in essential depth layers was investigated at a large-scale geothermal collector system (LSC) in Bad Nauheim, Germany. Quasi-one-dimensional simulations using the FEFLOW® finite-element simulation system were employed to determine site-dependent and seasonally varying moisture contents, from which thermal conductivities were derived. The model setup was previously validated based on recorded moisture contents. The simulations resulted in groundwater-related maximum seasonal and spatial differences in thermal conductivity of 0.14 W/(m∙K) in the LSC area. Larger differences of up to 0.21 W/(m∙K) resulted for different soil textures at the same depth due to different thermal properties. The results indicate that an efficient design of LSCs requires a sufficiently detailed subsurface exploration to account for small-scale variations in grain size distribution and groundwater level.

Funder

Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3