Methane Concentration Forecasting Based on Sentinel-5P Products and Recurrent Neural Networks

Author:

Psomouli Theofani1,Kansizoglou Ioannis2ORCID,Gasteratos Antonios2ORCID

Affiliation:

1. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

2. Department of Production and Management Engineering, Democritus University of Thrace, Vas. Sophias 12, GR-671 32 Xanthi, Greece

Abstract

The increase in the concentration of geological gas emissions in the atmosphere and particularly the increase of methane is considered by the majority of the scientific community as the main cause of global climate change. The main reasons that place methane at the center of interest, lie in its high global warming potential (GWP) and its lifetime in the atmosphere. Anthropogenic processes, like engineering geology ones, highly affect the daily profile of gasses in the atmosphere. Should direct measures be taken to reduce emissions of methane, immediate global warming mitigation could be achieved. Due to its significance, methane has been monitored by many space missions over the years and as of 2017 by the Sentinel-5P mission. Considering the above, we conclude that monitoring and predicting future methane concentration based on past data is of vital importance for the course of climate change over the next decades. To that end, we introduce a method exploiting state-of-the-art recurrent neural networks (RNNs), which have been proven particularly effective in regression problems, such as time-series forecasting. Aligned with the green artificial intelligence (AI) initiative, the paper at hand investigates the ability of different RNN architectures to predict future methane concentration in the most active regions of Texas, Pennsylvania and West Virginia, by using Sentinel-5P methane data and focusing on computational and complexity efficiency. We conduct several empirical studies and utilize the obtained results to conclude the most effective architecture for the specific use case, establishing a competitive prediction performance that reaches up to a 0.7578 mean squared error on the evaluation set. Yet, taking into consideration the overall efficiency of the investigated models, we conclude that the exploitation of RNN architectures with less number of layers and a restricted number of units, i.e., one recurrent layer with 8 neurons, is able to better compensate for competitive prediction performance, meanwhile sustaining lower computational complexity and execution time. Finally, we compare RNN models against deep neural networks along with the well-established support vector regression, clearly highlighting the supremacy of the recurrent ones, as well as discuss future extensions of the introduced work.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

1. Climate change: Implications for engineering geology practice;Nathanail;Geol. Soc. Lond. Eng. Geol. Spec. Publ.,2009

2. Modern global climate change;Karl;Science,2003

3. Tuckett, R. (2019). Encyclopedia of Analytical Science, Elsevier.

4. Non-CO2 greenhouse gases and climate change;Montzka;Nature,2011

5. Shukla, P., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H., Roberts, D., Zhai, P., Slade, R., Connors, S., and Van Diemen, R. (2019). Climate Change and Land, IPCC.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3