An Overview of Opportunities for Machine Learning Methods in Underground Rock Engineering Design

Author:

Morgenroth Josephine,Khan Usman T.,Perras Matthew A.ORCID

Abstract

Machine learning methods for data processing are gaining momentum in many geoscience industries. This includes the mining industry, where machine learning is primarily being applied to autonomously driven vehicles such as haul trucks, and ore body and resource delineation. However, the development of machine learning applications in rock engineering literature is relatively recent, despite being widely used and generally accepted for decades in other risk assessment-type design areas, such as flood forecasting. Operating mines and underground infrastructure projects collect more instrumentation data than ever before, however, only a small fraction of the useful information is typically extracted for rock engineering design, and there is often insufficient time to investigate complex rock mass phenomena in detail. This paper presents a summary of current practice in rock engineering design, as well as a review of literature and methods at the intersection of machine learning and rock engineering. It identifies gaps, such as standards for architecture, input selection and performance metrics, and areas for future work. These gaps present an opportunity to define a framework for integrating machine learning into conventional rock engineering design methodologies to make them more rigorous and reliable in predicting probable underlying physical mechanics and phenomenon.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference116 articles.

1. Rock Mechanics-an Introduction for the Practical Engineer;Hoek;Min. Mag.,1966

2. Chapter 1: What Is Machine Learning?;Mitchell,2015

3. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting

4. Concepts and Application of Machine Learning to Mining Geoscience: A Practical Course,2019

5. Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3