Reinforcement Learning for the Face Support Pressure of Tunnel Boring Machines

Author:

Soranzo Enrico1ORCID,Guardiani Carlotta1ORCID,Wu Wei1ORCID

Affiliation:

1. Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences, 1180 Vienna, Austria

Abstract

In tunnel excavation with boring machines, the tunnel face is supported to avoid collapse and minimise settlement. This article proposes the use of reinforcement learning, specifically the deep Q-network algorithm, to predict the face support pressure. The algorithm uses a neural network to make decisions based on the expected rewards of each action. The approach is tested both analytically and numerically. By using the soil properties ahead of the tunnel face and the overburden depth as the input, the algorithm is capable of predicting the optimal tunnel face support pressure whilst minimising settlement, and adapting to changes in geological and geometrical conditions. The algorithm reaches maximum performance after 400 training episodes and can be used for random geological settings without retraining.

Funder

Otto Pregl Foundation for geotechnical fundamental research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference96 articles.

1. The stability of shallow tunnels and underground openings in cohesive material;Davis;Géotechnique,1980

2. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material;Leca;Géotechnique,1990

3. The face stability of slurry-shield-driven tunnels;Anagnostou;Tunn. Undergr. Space Technol.,1994

4. Face stability conditions with earth-pressure-balanced shields;Anagnostou;Tunn. Undergr. Space Technol.,1996

5. Horn, N. (1961, January 18–21). Horizontal ground pressure on vertical faces of tunnel tubes. Proceedings of the Landeskonferenz der Ungarischen Tiefbauindustrie, Budapest, Hungary.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3