Hybrid Compression Optimization Based Rapid Detection Method for Non-Coal Conveying Foreign Objects

Author:

Zhang MengchaoORCID,Yue Yanbo,Jiang Kai,Li Meixuan,Zhang Yuan,Zhou ManshanORCID

Abstract

The existence of conveyor foreign objects poses a serious threat to the service life of conveyor belts, which will cause abnormal damage or even tearing, so fast and effective detection of conveyor foreign objects is of great significance to ensure the safe and efficient operation of belt conveyors. Considering the need for the foreign object detection algorithm to operate in edge computing devices, this paper proposes a hybrid compression method that integrates network sparse, structured pruning, and knowledge distillation to compress the network parameters and calculations. Combined with a Yolov5 network for practice, three structured pruning strategies are specifically proposed, all of which are proven to have achieved a good compression effect. The experiment results show that under the pruning rate of 0.9, the proposed three pruning strategies can achieve more than 95% compression for network parameters, more than 90% compression for the computation, and more than 90% compression for the size of the network model, and the optimized network is able to accelerate inference on both Central Processing Unit (CPU) and Graphic Processing Unit (GPU) hardware platforms, with a maximum speedup of 70.3% on the GPU platform and 157.5% on the CPU platform, providing an excellent real-time performance but also causing a large accuracy loss. In contrast, the proposed method balances better real-time performance and detection accuracy (>88.2%) when the pruning rate is at 0.6~0.9. Further, to avoid the influence of motion blur, a method of introducing prior knowledge is proposed to improve the resistance of the network, thus strongly ensuring the detection effect. All the technical solutions proposed are of great significance in promoting the intelligent development of coal mine equipment, ensuring the safe and efficient operation of belt conveyors, and promoting sustainable development.

Funder

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3