A new network model for multiple object detection for autonomous vehicle detection in mining environment

Author:

Hanif Muhammad Wahab1ORCID,Yu Zhenhua1,Bashir Rehmat2ORCID,Li Zhanli1,Farooq Sardar Annes3,Sana Muhammad Usman4

Affiliation:

1. College of Computer Science and Technology Xi'an University of Science and Technology Xi'an Shaanxi China

2. Department of Mechanical Engineering University of Engineering and Technology (Main Campus) Lahore Pakistan

3. Safety Science School Xi'an Shaanxi China

4. Department of Computer Science University of Gujrat Gujrat Pakistan

Abstract

AbstractConsidering the challenges of low multi‐object detection accuracy and difficulty in identifying small targets caused by challenging environmental conditions including irregular lighting patterns and ambient noise levels in the mining environment with autonomous electric locomotives. A new network model based on SOD−YOLOv5s−4L has been proposed to detect multi‐objects for autonomous electric locomotives in underground coal mines. Improvements have been applied in YOLOv5s to construct the SOD−YOLOv5s−4L model, by introducing the SIoU loss function to address the mismatch between real and predicted bounding box directions, facilitating the model to learn target position information more efficiently. This research introduces a decoupled head to enhance feature fusion and improve the positioning precision of the network model, enabling rapid capture of multi‐scale target features. Furthermore, the detection capability of the model has been increased by introducing the small target detection layer which is developed by increasing the number of detection layers from three to four. The experimental results on multiple object detection dataset show that the proposed model achieves significant improvement in mean average precision (mAP) of almost 98% for various types of targets and an average precision (AP) of nearly 99% for small targets on the other hand it achieves 5.19% (mAP) and 9.79% (AP) compared to the YOLOv5s model. Furthermore, comparative analysis with other models like YOLOv7 and YOLOv8 shows that the proposed model has superior performance in terms of object detection.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3