Modeling and Design Optimization of a New Piezoelectric Inchworm Actuator with Screw Clamping Mechanisms

Author:

Sun HaichaoORCID,Shi YunlaiORCID,Wang Qiang,Li Xing,Wang Junhan

Abstract

A new piezoelectric inchworm actuator with screw clamping mechanisms has been developed recently for the wing folding mechanism of a small unmanned aircraft where the actuator power density is a great concern. Considering that the prototype actuator was designed just with engineering intuition and the performance optimization through experimental developments would take a vast amount of cost and time, a mathematical model was developed to investigate the actuator’s critical design parameters and optimize its presently undesirable performance. Based on the lumped parameter method reported previously, and taking full account of the detailed modeling of the complex actuator housing and the actual nonlinear behaviors from the high-force contact and friction occurring at the screw-nut interface, as well as the output performance of the main drive elements including the piezoelectric stack and hollow ultrasonic motors (HUSMs), this model was built and then was experimentally verified for its accuracy and availability. Finally, nine design parameters were studied for their individual effect on the actuator’s output using the proposed model. The simulation results indicate that the performance can be considerably improved by performing a slight modification to the prototype, and the dynamic modeling and parameter optimization methods used in this study can also serve as a useful reference for the design of similar piezoelectric inchworm actuators with intermittent clamping behaviors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3