How Environmental Factors Affect Forest Fire Occurrence in Yunnan Forest Region

Author:

Zhu ZhengORCID,Deng Xiaofan,Zhao FanORCID,Li Shiyou,Wang Leiguang

Abstract

Forest fire is an ecosystem regulating factor and affects the stability, renewal, and succession of forest ecosystems. However, uncontrolled forest fires can be harmful to the forest ecosystem and to the public at large. Although Yunnan, China is regarded as a global hotspot for forest fires, a general lack of understanding prevails there regarding the mechanisms and interactions that cause forest fires. A logistic regression model based on fire points in Yunnan detected by satellite in 2005–2019 was used to estimate how environmental factors in local areas affect forest fire events. The results show that meteorology is the dominant cause of the frequent forest fires in the area. Other factors of secondary importance are the daily minimum relative humidity and the daily maximum temperature. When using the logistic regression model based on the data of fire points in Yunnan over the period 2005–2019, the key threshold for the daily minimum relative humidity is 28.07% ± 11.85% and the daily maximum temperature is 21.23 ± 11.15 °C for a forest fire probability of 50%. In annual and monthly dynamic trends, the daily minimum relative humidity also plays a dominant role in which combustible substance load remains relatively stable from January to March, and the impact on forest fire becomes greater in April, May, and June, which plays a secondary role compared with the interannual climate. The maximum daily temperature ranks third in importance for forest fires. At the county level, minimum relative humidity and maximum temperature are the top two factors influencing forest fires, respectively. Meanwhile, the differences in forest fire points between counties correspond to the pathways of the two monsoons. This study applies quantitative expressions to reveal the important environmental factors and mechanisms that cause forest fires. The results provide a reference for monitoring and predicting forest fires.

Funder

Yunnan Fundamental Research Projects, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3