Hyperparameter-Optimization-Inspired Long Short-Term Memory Network for Air Quality Grade Prediction

Author:

Wen Dushi123,Zheng Sirui123,Chen Jiazhen123,Zheng Zhouyi123ORCID,Ding Chen123ORCID,Zhang Lei45

Affiliation:

1. School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

2. Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an 710121, China

3. Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an 710121, China

4. Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710129, China

5. National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi’an 710129, China

Abstract

In the world, with the continuous development of modern society and the acceleration of urbanization, the problem of air pollution is becoming increasingly salient. Methods for predicting the air quality grade and determining the necessary governance are at present most urgent problems waiting to be solved by human beings. In recent years, more and more machine-learning-based methods have been used to solve the air quality prediction problem. However, the uncertainty of environmental changes and the difficulty of precisely predicting quantitative values seriously influence prediction results. In this paper, the proposed air pollutant quality grade prediction method based on a hyperparameter-optimization-inspired long short-term memory (LSTM) network provides two advantages. Firstly, the definition of air quality grade is introduced in the air quality prediction task, which turns a fitting problem into a classification problem and makes the complex problem simple; secondly, the hunter–prey optimization algorithm is used to optimize the hyperparameters of the LSTM structure to obtain the optimal network structure adaptively determined through the use of input data, which can include more generalization abilities. The experimental results from three real Xi’an air quality datasets display the effectiveness of the proposed method.

Funder

National Natural Science Foundations of China

National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3