Automated Android Malware Detection Using Optimal Ensemble Learning Approach for Cybersecurity

Author:

Alamro Hayam1,Mtouaa Wafa2,Aljameel Sumayh3ORCID,Salama Ahmed S.4,Hamza Manar Ahmed5,Othman Aladdin Yahya5ORCID

Affiliation:

1. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

2. Department of Mathematics, Faculty of Sciences and Arts, King Khalid University, Muhayil, Saudi Arabia

3. Department of Computer Science, College of Computer Science and Information Technology, Saudi Aramco Cybersecurity Chair, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

4. Department of Electrical Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo, Egypt

5. Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

Funder

Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project

Princess Nourah bint Abdulrahman University Researchers Supporting Project number

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

SAUDI ARAMCO Cybersecurity Chair for funding this project

Future University in Egypt

Prince Sattam bin Abdulaziz University project number

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TDBAMLA: Temporal and dynamic behavior analysis in Android malware using LSTM and attention mechanisms;Computer Standards & Interfaces;2025-03

2. Predictive Shield: Harnessing Machine Learning to Forecast Vulnerability Exploitability;International Journal of Advanced Research in Science, Communication and Technology;2024-08-19

3. DETECTION OF ANDROID MALWARE USING DEEP LEARNING ENSEMBLE WITH CHEETAH-OPTIMIZED FEATURE SELECTION;Advances and Applications in Discrete Mathematics;2024-06-06

4. Visualising Static Features and Classifying Android Malware Using a Convolutional Neural Network Approach;Applied Sciences;2024-05-31

5. Ensemble-learning-based android malware detection using hybrid features;2024 the 8th International Conference on Innovation in Artificial Intelligence;2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3