A Super-Efficient TinyML Processor for the Edge Metaverse

Author:

Khajooei Arash1ORCID,Jamshidi Mohammad (Behdad)2ORCID,Shokouhi Shahriar B.1

Affiliation:

1. School of Electrical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran

2. Faculty of Electrical Engineering, University of West Bohemia, Univerzitni 2795/26, 301-00 Pilsen, Czech Republic

Abstract

Although the Metaverse is becoming a popular technology in many aspects of our lives, there are some drawbacks to its implementation on clouds, including long latency, security concerns, and centralized infrastructures. Therefore, designing scalable Metaverse platforms on the edge layer can be a practical solution. Nevertheless, the realization of these edge-powered Metaverse ecosystems without high-performance intelligent edge devices is almost impossible. Neuromorphic engineering, which employs brain-inspired cognitive architectures to implement neuromorphic chips and Tiny Machine Learning (TinyML) technologies, can be an effective tool to enhance edge devices in such emerging ecosystems. Thus, a super-efficient TinyML processor to use in the edge-enabled Metaverse platforms has been designed and evaluated in this research. This processor includes a Winner-Take-All (WTA) circuit that was implemented via a simplified Leaky Integrate and Fire (LIF) neuron on an FPGA. The WTA architecture is a computational principle in a neuromorphic system inspired by the mini-column structure in the human brain. The resource consumption of the WTA architecture is reduced by employing our simplified LIF neuron, making it suitable for the proposed edge devices. The results have indicated that the proposed neuron improves the response speed to almost 39% and reduces resource consumption by 50% compared to recent works. Using our simplified neuron, up to 4200 neurons can be deployed on VIRTEX 6 devices. The maximum operating frequency of the proposed neuron and our spiking WTA is 576.319 MHz and 514.095 MHz, respectively.

Publisher

MDPI AG

Subject

Information Systems

Reference42 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3