Implementing Tensor-Organized Memory for Message Retrieval Purposes in Neuromorphic Chips

Author:

Khajooei Nejad Arash1ORCID,Jamshidi Mohammad (Behdad)2ORCID,B. Shokouhi Shahriar1ORCID

Affiliation:

1. School of Electrical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran

2. The International Association of Engineers, 37-39 Hung To Road, Hong Kong 999077, China

Abstract

This paper introduces Tensor-Organized Memory (TOM), a novel neuromorphic architecture inspired by the human brain’s structural and functional principles. Utilizing spike-timing-dependent plasticity (STDP) and Hebbian rules, TOM exhibits cognitive behaviors similar to the human brain. Compared to conventional architectures using a simplified leaky integrate-and-fire (LIF) neuron model, TOM showcases robust performance, even in noisy conditions. TOM’s adaptability and unique organizational structure, rooted in the Columnar-Organized Memory (COM) framework, position it as a transformative digital memory processing solution. Innovative neural architecture, advanced recognition mechanisms, and integration of synaptic plasticity rules enhance TOM’s cognitive capabilities. We have compared the TOM architecture with a conventional floating-point architecture, using a simplified LIF neuron model. We also implemented tests with varying noise levels and partially erased messages to evaluate its robustness. Despite the slight degradation in performance with noisy messages beyond 30%, the TOM architecture exhibited appreciable performance under less-than-ideal conditions. This exploration into the TOM architecture reveals its potential as a framework for future neuromorphic systems. This study lays the groundwork for future applications in implementing neuromorphic chips for high-performance intelligent edge devices, thereby revolutionizing industries and enhancing user experiences within the power of artificial intelligence.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3