Joints Trajectory Planning of Robot Based on Slime Mould Whale Optimization Algorithm

Author:

Li XinningORCID,Yang Qin,Wu Hu,Tan Shuai,He Qun,Wang Neng,Yang Xianhai

Abstract

The joints running trajectory of a robot directly affects it’s working efficiency, stationarity and working quality. To solve the problems of slow convergence speed and weak global search ability in the current commonly used joint trajectory optimization algorithms, a joint trajectory planning method based on slime mould whale optimization algorithm (SMWOA) was researched, which could obtain the joint trajectory within a short time and with low energy consumption. On the basis of analyses of the whale optimization algorithm (WOA) and slime mould algorithm (SMA) in detail, the SMWOA was proposed by combining the two methods. By adjusting dynamic parameters and introducing dynamic weights, the proposed SMWOA increased the probability of obtaining the global optimal solution. The optimized results of 15 benchmark functions verified that the optimization accuracy of the SMWOA is clearly better than that of other classical algorithms. An experiment was carried out in which this algorithm was applied to joint trajectory optimization. Taking 6-DOF UR5 manipulator as an example, the results show that the optimized running time of the joints is reduced by 37.674% compared with that before optimization. The efficiency of robot joint motion was improved. This study provides a theoretical basis for the optimization of other engineering fields.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3