Abstract
Many measures to quantify the nonlinear dynamics of a time series are based on estimating the probability of certain features from their relative frequencies. Once a normalised histogram of events is computed, a single result is usually derived. This process can be broadly viewed as a nonlinear I R n mapping into I R , where n is the number of bins in the histogram. However, this mapping might entail a loss of information that could be critical for time series classification purposes. In this respect, the present study assessed such impact using permutation entropy (PE) and a diverse set of time series. We first devised a method of generating synthetic sequences of ordinal patterns using hidden Markov models. This way, it was possible to control the histogram distribution and quantify its influence on classification results. Next, real body temperature records are also used to illustrate the same phenomenon. The experiments results confirmed the improved classification accuracy achieved using raw histogram data instead of the PE final values. Thus, this study can provide a very valuable guidance for the improvement of the discriminating capability not only of PE, but of many similar histogram-based measures.
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献