Author:
Wang Junyi,Fan Yifei,Yang Yu,Zhang Luoqi,Zhang Yan,Li Shixiang,Wei Yali
Abstract
Monitoring vegetation growth and exploring the driving force behind it is very important for the study of global climate change and ecological environmental protection. Based on Normalized Difference Vegetation Index (NDVI) data from Moderate-Resolution Imaging Spectroradiometer (MODIS), meteorological and nighttime lights data from 2001 to 2020, this study uses the Theil–Sen slope test, Mann–Kendall significance test, Rescaled Range Analysis and partial correlation analysis to investigate the evolution of NDVI in the Minjiang River Basin, China, from three aspects: the spatial-temporal variation characteristics and future trend prediction of NDVI, the variation of climate and human activities in the basin, and the influences of different driving forces on NDVI. The results show that the average NDVI in the growing season was 0.60 in the Minjiang River Basin in the past twenty years, with a growth rate of 0.002/a. The area with high NDVI growth accounts for 66.02%, mainly distributed in the southeast, the central and the northern low-altitude areas of the basin. Combined with the Hurst index, the NDVI in the Minjiang River Basin exhibits an anti-sustainable tendency, with 63.22% of the area changing from improvement to degradation in the future. Meanwhile, the spatial differentiation of NDVI in the Minjiang River Basin is mainly affected by topography and climate factors, followed by human activities. This study not only provides scientific guidelines for the vegetation restoration, soil and water conservation and sustainable development of the Minjiang River Basin, but also provides a scientific basis for making informed decisions on ecological protection under the impacts of climate change and human activities.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献