Abstract
In the Loess Plateau (LP) of China, the vegetation degradation and soil erosion problems have been shown to be curbed after the implementation of the Grain for Green program. In this study, the LP is divided into the northwestern semi-arid area and the southeastern semi-humid area using the 400 mm isohyet. The spatial–temporal evolution of the vegetation NDVI during 2000–2015 are analyzed, and the driving forces (including factors of climate, environment, and human activities) of the evolution are quantitatively identified using the geographical detector model (GDM). The results showed that the annual mean NDVI in the entire LP was 0.529, and it decreased from the semi-humid area (0.619) to the semi-arid area (0.346). The mean value of the coefficient of variation of the NDVI was 0.1406, and it increased from the semi-humid area (0.1165) to the semi-arid area (0.1926). The annual NDVI growth rate in the entire LP was 0.0079, with the NDVI growing faster in the semi-humid area (0.0093) than in the semi-arid area (0.0049). The largest increments of the NDVI were from grassland, farmland, and woodland. The GDM results revealed that changes in the spatial distribution of the NDVI could be primarily explained by the climatic and environmental factors in the semi-arid area, such as precipitation, soil type, and vegetation type, while the changes were mainly explained by the anthropogenic factors in the semi-humid area, such as the GDP density, land-use type, and population density. The interactive analysis showed that interactions between factors strengthened the impacts on the vegetation change compared with an individual factor. Furthermore, the ranges/types of factors suitable for vegetation growth were determined. The conclusions of this study have important implications for the formulation and implementation of ecological conservation and restoration strategies in different regions of the LP.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering
Subject
General Earth and Planetary Sciences