Lightweight Model for Botnet Attack Detection in Software Defined Network-Orchestrated IoT

Author:

Negera Worku Gachena1,Schwenker Friedhelm2ORCID,Debelee Taye Girma34ORCID,Melaku Henock Mulugeta1ORCID,Feyisa Degaga Wolde3ORCID

Affiliation:

1. Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa 445, Ethiopia

2. Institute of Neural Information Processing, University of Ulm, 89069 Ulm, Germany

3. Ethiopian Artificial Intelligence Institute, Addis Ababa 40782, Ethiopia

4. Department of Electrical and Computer Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia

Abstract

The Internet of things (IoT) is being used in a variety of industries, including agriculture, the military, smart cities and smart grids, and personalized health care. It is also being used to control critical infrastructure. Nevertheless, because the IoT lacks security procedures and lack the processing power to execute computationally costly antimalware apps, they are susceptible to malware attacks. In addition, the conventional method by which malware-detection mechanisms identify a threat is through known malware fingerprints stored in their database. However, with the ever-evolving and drastic increase in malware threats in the IoT, it is not enough to have traditional antimalware software in place, which solely defends against known threats. Consequently, in this paper, a lightweight deep learning model for an SDN-enabled IoT framework that leverages the underlying IoT resource-constrained devices by provisioning computing resources to deploy instant protection against botnet malware attacks is proposed. The proposed model can achieve 99% precision, recall, and F1 score and 99.4% accuracy. The execution time of the model is 0.108 milliseconds with 118 KB size and 19,414 parameters. The proposed model can achieve performance with high accuracy while utilizing fewer computational resources and addressing resource-limitation issues.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3