Lightweight Multireceptive Field CNN for 12-Lead ECG Signal Classification

Author:

Feyisa Degaga Wolde12ORCID,Debelee Taye Girma12ORCID,Ayano Yehualashet Megersa1ORCID,Kebede Samuel Rahimeto13ORCID,Assore Tariku Fekadu4

Affiliation:

1. Ethiopian Artificial Intelligence Institute, P.O. Box 40782, Addis Ababa, Ethiopia

2. Department of Computer Engineering, Addis Ababa Science and Technology University, P.O. Box 120611, Addis Ababa, Ethiopia

3. Department of Electrical and Computer Engineering, Debre Berhan University, Debre Berhan 445, Ethiopia

4. Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia

Abstract

The electrical activity produced during the heartbeat is measured and recorded by an ECG. Cardiologists can interpret the ECG machine’s signals and determine the heart’s health condition and related causes of ECG signal abnormalities. However, cardiologist shortage is a challenge in both developing and developed countries. Moreover, the experience of a cardiologist matters in the accurate interpretation of the ECG signal, as the interpretation of ECG is quite tricky even for experienced doctors. Therefore, developing computer-aided ECG interpretation is required for its wide-reaching effect. 12-lead ECG generates a 1D signal with 12 channels among the well-known time-series data. Classical machine learning can develop automatic detection, but deep learning is more effective in the classification task. 1D-CNN is being widely used for CVDS detection from ECG datasets. However, adopting a deep learning model designed for computer vision can be problematic because of its massive parameters and the need for many samples to train. In many detection tasks ranging from semantic segmentation of medical images to time-series data classification, multireceptive field CNN has improved performance. Notably, the nature of the ECG dataset made performance improvement possible by using a multireceptive field CNN (MRF-CNN). Using MRF-CNN, it is possible to design a model that considers semantic context information within ECG signals with different sizes. As a result, this study has designed a multireceptive field CNN architecture for ECG classification. The proposed multireceptive field CNN architecture can improve the performance of ECG signal classification. We have achieved a 0.72 F 1 score and 0.93 AUC for 5 superclasses, a 0.46 F 1 score and 0.92 AUC for 20 subclasses, and a 0.31 F 1 score and 0.92 AUC for all the diagnostic classes of the PTB-XL dataset.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference64 articles.

1. A practical approach to analyze stored electrograms;L. J. Jordaens;Implantable Cardioverter Defibrillator Stored ECGs: Clinical Management and Case Reports,2007

2. Status of Computerized Electrocardiography

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3