UAV Hyperspectral Characterization of Vegetation Using Entropy-Based Active Sampling for Partial Least Square Regression Models

Author:

Amitrano Donato1,Cicala Luca1ORCID,De Mizio Marco1,Tufano Francesco1

Affiliation:

1. Italian Aerospace Research Centre, Via Maiorise snc, 81043 Capua, Italy

Abstract

Optimization of agricultural practices is key for facing the challenges of modern agri-food systems, which are expected to satisfy a growing demand of food production in a landscape characterized by a reduction in cultivable lands and an increasing awareness of sustainability issues. In this work, an operational methodology for characterization of vegetation biomass and nitrogen content based on close-range hyperspectral remote sensing is introduced. It is based on an unsupervised active learning technique suitable for the calibration of a partial least square regression. The proposed technique relies on an innovative usage of Shannon’s entropy and allows for the set-up of an incremental monitoring framework from scratch aiming at minimizing field sampling activities. Experimental results concerning the estimation of grassland biomass and nitrogen content returned RMSE values of 2.05 t/ha and 4.68 kg/ha, respectively. They are comparable with the literature, mostly relying on supervised frameworks and confirmed the suitability of the proposed methodology with operational environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference64 articles.

1. FAO (2022). The State of Food and Agriculture 2022, FAO.

2. Systematic literature review of implementations of precision agriculture;Cisternas;Comput. Electron. Agric.,2020

3. Digital twins in smart farming;Verdouw;Agric. Syst.,2021

4. Digital Twin: Enabling Technologies, Challenges and Open Research;Fuller;IEEE Access,2020

5. A control model for object virtualization in supply chain management;Verdouw;Comput. Ind.,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperspectral Features for Contaminated Soil Detection;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Active Learning Strategies for Remote Sensing Estimation of Agronomic Parameters with Limited Calibration Data;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Vegetation Biomass and Nitrogen Content Estimation Using Ensembles: Regression and Active Learning Strategies for Field Sampling Reduction;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Forest Aboveground Biomass Estimation Using Machine Learning Ensembles: Active Learning Strategies for Model Transfer and Field Sampling Reduction;Remote Sensing;2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3