Application of an Electronic Nose as a New Technology for Rapid Detection of Adulteration in Honey

Author:

Gonçalves Wellington Belarmino1,Teixeira Wanderson Sirley Reis2,Cervantes Evelyn Perez3,Mioni Mateus de Souza Ribeiro2ORCID,Sampaio Aryele Nunes da Cruz Encide2,Martins Otávio Augusto2,Gruber Jonas1ORCID,Pereira Juliano Gonçalves2ORCID

Affiliation:

1. Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil

2. Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Botucatu 18610-000, SP, Brazil

3. Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil

Abstract

This work demonstrates the application of an electronic nose (e-nose) for discrimination between authentic and adulterated honey. The developed e-nose is based on electrodes covered with ionogel (ionic liquid + gelatin + Fe3O4 nanoparticle) films. Authentic and adulterated honey samples were submitted to e-nose analysis, and the capacity of the sensors for discrimination between authentic and adulterated honey was evaluated using principal component analysis (PCA) based on average relative response data. From the PCA biplot, it was possible to note two well-defined clusters and no intersection was observed. To evaluate the relative response data as input for autonomous classification, different machine learning algorithms were evaluated, namely instance based (IBK), Kstar, Trees-J48 (J48), random forest (RF), multilayer perceptron (MLP), naive Bayes (NB), and sequential minimal optimization (SMO). Considering the average data, the highest accuracy was obtained for Kstar: 100% (k-fold = 3). Additionally, this algorithm was also compared regarding its sensitivity and specificity, both being 100% for both features. Thus, due to the rapidity, simplicity, and accuracy of the developed methodology, the technology based on e-noses has the potential to be applied to honey quality control.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3