The Identification of Ice Floes and Calculation of Sea Ice Concentration Based on a Deep Learning Method

Author:

Zhou Li1ORCID,Cai Jinyan2,Ding Shifeng2ORCID

Affiliation:

1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

When navigating ships in cold regions, sea ice concentration plays a crucial role in determining a ship’s navigability. However, automatically extracting the sea ice concentration and floe size distribution remains challenging, due to the difficulty in detecting all the ice floes from the images captured in complex polar environments, particularly those that include both ships and sea ice. In this paper, we propose using the YOLACT network to address this issue. Cameras installed on the ship collect images during transit and an image dataset is constructed to train a model that can intelligently identify all the targets in the image and remove any noisy targets. To overcome the challenge of identifying seemingly connected ice floes, the non-maximum suppression (NMS) in YOLACT is improved. Binarization is then applied to process the detection results, with the aim of obtaining an accurate sea ice concentration. We present a color map and histogram of the associated floe size distribution based on the ice size. The speed of calculating the sea ice density of each image reaches 21 FPS and the results show that sea ice concentration and floe size distribution can be accurately measured. We provide a case study to demonstrate the effectiveness of the proposed approach.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3