Multi-Scale Polar Object Detection Based on Computer Vision

Author:

Ding Shifeng1ORCID,Zeng Dinghan1,Zhou Li2ORCID,Han Sen1,Li Fang2ORCID,Wang Qingkai3

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

When ships navigate in polar regions, they may collide with ice masses, which may cause structural damage and endanger the safety of their occupants. Therefore, it is essential to promptly detect sea ice, icebergs, and passing ships. However, individual data sources have limits and should be combined and integrated to obtain more thorough information. A polar multi-target local-scale dataset with five categories was constructed. Sea ice, icebergs, ice melt ponds, icebreakers, and inter-ice channels were identified by a single-shot detector (SSD), with a final mAP value of 70.19%. A remote sensing sea ice dataset with 15,948 labels was constructed. The You Only Look Once (YOLOv5) model was improved with Squeeze-and-Excitation Networks (SE), Funnel Activation (FReLU), Fast Spatial Pyramid Pooling, and Cross Stage Partial Network (SPPCSPC-F). In the detection stage, a slicing operation was performed on remote sensing images to detect small targets. Simulated sea ice data were included to verify the model’s generalization ability. Then, the improved model was trained and evaluated in an ablation experiment. The mAP, recall (R), and precision (P) values of the improved YOLOv5 were 75.3%, 70.3, and 75.4%, with value increases of 3.5%, 3.4%, and 1.9%, respectively, compared to the original model. The improved YOLOv5 was also compared with other models such as YOLOv3, Faster-RCNN, and YOLOv4-tiny. The results indicated that the performance of the proposed model surpassed those of the other conventional models. This study achieved the detection of multiple targets on different scales in a polar region and realized data fusion, avoiding the limitations of using a single data source, and provides a method to support polar ship path planning.

Funder

National Key Research and Development Program

General Projects of National Natural Science Foundation of China

High-Tech Ship Research Project of the Ministry of Industry and Information Technology

CSSC-SJTU joint prospect funding

Science and Technology Commission of Shanghai Municipality Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3