Affiliation:
1. School of Science Technology and Engineering, University of the Sunshine Coast, Sippy Downs 4556, Australia
Abstract
Increased demand for sustainable timber products has resulted in large investments in agroforestry in Australia, with plantations growing various Pinus species, selected to suit a plantation’s environment. Juvenile Pinus species have a low fire tolerance. With Australia’s history of wildfires and the likelihood of climate change exacerbating that risk, the potential for a total loss of invested capital is high unless cost-effective targeted risk minimisation is part of forest management plans. Based on the belief that the understory profiles within the juvenile plantations are a major factor determining fuel hazard risks, an accurate assessment of these profiles is required to effectively mitigate those risks. At present, assessment protocols are largely reliant on ground-based observations, which are labour-intensive, time consuming, and expensive. This research project investigates the effectiveness of using geospatial analysis of drone-derived photographic data collected in the commercial pine plantations of south-eastern Queensland as a cost-saving alternative to current fuel hazard risk assessment practices. Understory composition was determined using the supervised classification of orthomosaic images together with derivations of canopy height models (CHMs). The CHMs were subjected to marker-controlled watershed segmentation (MCWS) analysis, isolating and removing the plantation pine trees, enabling the quantification of understory fuel profiles. The method used proved highly applicable to immature forest environments with minimal canopy closure, but became less reliable for close canopied older plantations.
Funder
Forest Industries Research Centre
Subject
General Earth and Planetary Sciences
Reference65 articles.
1. Forest management scenarios in a changing climate: Trade-offs between carbon, timber, and old forest;Creutzburg;Ecol. Appl.,2017
2. Primary forest cover loss in Indonesia over 2000–2012;Margono;Nat. Clim. Chang.,2014
3. Using multi-source remote sensing data to classify larch plantations in Northeast China and support the development of multi-purpose silviculture;Shang;J. For. Res.,2018
4. Production, restoration, mitigation: A new generation of plantations;Silva;New For.,2019
5. Fuel manipulation with herbicide treatments to reduce fire hazard in young pine (Pinus elliottii × P. caribaea) plantations in south-east Queensland, Australia;Lewis;Int. J. Wildland Fire,2012
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献