A New Approach to Estimate Fuel Budget and Wildfire Hazard Assessment in Commercial Plantations Using Drone-Based Photogrammetry and Image Analysis

Author:

Penglase Kim1,Lewis Tom1,Srivastava Sanjeev K.1ORCID

Affiliation:

1. School of Science Technology and Engineering, University of the Sunshine Coast, Sippy Downs 4556, Australia

Abstract

Increased demand for sustainable timber products has resulted in large investments in agroforestry in Australia, with plantations growing various Pinus species, selected to suit a plantation’s environment. Juvenile Pinus species have a low fire tolerance. With Australia’s history of wildfires and the likelihood of climate change exacerbating that risk, the potential for a total loss of invested capital is high unless cost-effective targeted risk minimisation is part of forest management plans. Based on the belief that the understory profiles within the juvenile plantations are a major factor determining fuel hazard risks, an accurate assessment of these profiles is required to effectively mitigate those risks. At present, assessment protocols are largely reliant on ground-based observations, which are labour-intensive, time consuming, and expensive. This research project investigates the effectiveness of using geospatial analysis of drone-derived photographic data collected in the commercial pine plantations of south-eastern Queensland as a cost-saving alternative to current fuel hazard risk assessment practices. Understory composition was determined using the supervised classification of orthomosaic images together with derivations of canopy height models (CHMs). The CHMs were subjected to marker-controlled watershed segmentation (MCWS) analysis, isolating and removing the plantation pine trees, enabling the quantification of understory fuel profiles. The method used proved highly applicable to immature forest environments with minimal canopy closure, but became less reliable for close canopied older plantations.

Funder

Forest Industries Research Centre

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3