A Self-Adaptive Thresholding Approach for Automatic Water Extraction Using Sentinel-1 SAR Imagery Based on OTSU Algorithm and Distance Block

Author:

Tan Jianbo1,Tang Yi1,Liu Bin1,Zhao Guang2,Mu Yu3,Sun Mingjiang4,Wang Bo5

Affiliation:

1. School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China

2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. Sichuan Land Consolidation and Rehabilitation Center, Chengdu 610041, China

4. Beijing Zhongke Lantu Technology Development Co., Ltd. Chengdu Branch, Chengdu 610041, China

5. Xi’an Center of Mineral Resources Survey, China Geological Survey, Xi’an 710100, China

Abstract

As an indispensable material for animals, plants and human beings, obtaining accurate water body information rapidly is of great significance to maintain the balance of ecosystems and ensure normal production and the life of human beings. Due to its independence of the time of day and the weather conditions, synthetic aperture radar (SAR) data have been increasingly applied in the extraction of water bodies. However, there is a great deal of speckle noise in SAR images, which seriously affect the extraction accuracy of water. At present, most of the processing methods are filtering methods, which will cause the loss of detailed information. Based on the characteristic of side-looking SAR, this paper proposed a self-adaptive thresholding approach for automatic water extraction based on an OTSU algorithm and distance block. In this method, the whole images were firstly divided into uniform image blocks through a distance layer which was produced by the distance to the orbit. Then, a self-adaptive processing was conducted for merging blocks. The OTSU algorithm was used to obtain a threshold for classification and the Jeffries–Matusita (JM) distance was calculated with the classification result. The merge processing continued until the separability of image blocks reached the maximum. Subsequently, we started from the next block to repeat the merger, and so on until all blocks were processed. Ten study areas around the world and the local Dongting Lake area were applied to test the feasibility of the proposed method. In comparison with five other global threshold segmentation algorithms such as the traditional OTSU, MOMENTS, MEAN, ISODATA and MINERROR, the proposed method obtains the highest overall accuracy (OA) and kappa coefficient (KC), while this approach also demonstrates greater robustness in the analysis of time series. The findings of this study offer an effective method to improve water detection accuracy as well as reducing the influence of speckle noise and retaining details in the image.

Funder

the National Key Research & Development Program of China

Changsha University of Science and Technology Graduate Research Innovation Project

Investigation, monitoring and evaluation of natural resource interaction and ecological degradation in Qinling–Loess Plateau transitional zone

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3