Characterizing the 2022 Extreme Drought Event over the Poyang Lake Basin Using Multiple Satellite Remote Sensing Observations and In Situ Data

Author:

Liu Sulan1,Wu Yunlong123ORCID,Xu Guodong4,Cheng Siyu4,Zhong Yulong1ORCID,Zhang Yi2ORCID

Affiliation:

1. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China

2. Key Laboratory of Geological Survey and Evaluation of Ministry of Education, China University of Geosciences, Wuhan 430074, China

3. Hubei Luojia Laboratory, Wuhan 430079, China

4. Institute of Seismology, China Earthquake Administration, Wuhan 430071, China

Abstract

With advancements in remote sensing technology and the increasing availability of remote sensing platforms, the capacity to monitor droughts using multiple satellite remote sensing observations has significantly improved. This enhanced capability facilitates a comprehensive understanding of drought conditions and early warnings for extreme drought events. In this study, multiple satellite datasets, including Gravity Recovery and Climate Experiment (GRACE), the Global Precipitation Measurement (GPM) precipitation dataset, and the Global Land the Data Assimilation System (GLDAS) dataset, were used to conduct an innovative in-depth characteristic analysis and identification of the extreme drought event in the Poyang Lake Basin (PLB) in 2022. Furthermore, the drought characteristics were also supplemented by processing the synthetic aperture radar (SAR) image data to obtain lake water area changes and integrating in situ water level data as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index dataset, which provided additional instances of utilizing multi-source remote sensing satellite data for feature analysis on extreme drought events. The extreme drought event in 2022 was identified by the detection of non-seasonal negative anomalies in terrestrial water storage derived from the GRACE and GLDAS datasets. The Mann–Kendall (M-K) test results for water levels indicated a significant abrupt decrease around July 2022, passing a significance test with a 95% confidence level, which further validated the reliability of our finding. The minimum area of Poyang Lake estimated by SAR data, corresponding to 814 km2, matched well with the observed drought characteristics. Additionally, the evident lower vegetation index compared to other years also demonstrated the severity of the drought event. The utilization of these diverse datasets and their validation in this study can contribute to achieving a multi-dimensional monitoring of drought characteristics and the establishment of more robust drought models.

Funder

National Natural Science Fund of China

Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3