From Decompression Melting to Mantle-Wedge Refertilization and Metamorphism: Insights from Peridotites of the Alag Khadny Accretionary Complex (SW Mongolia)

Author:

Gornova Marina,Karimov AnasORCID,Skuzovatov SergeiORCID,Belyaev VasiliyORCID

Abstract

This study reports on mineral and bulk rock compositions of metaperidotites from the Alag Khadny accretionary complex in SW Mongolia, to reveal their nature and relationships with associated eclogites. The peridotites preserved original porphyroclastic textures and are composed of olivine, orthopyroxene relics, Cr-spinel, interstitial (not residual) clinopyroxene, and secondary chlorite, tremolite, olivine, Cr-magnetite, clinopyroxene, and antigorite. Cr-spinel has Cr# of 0.3–0.5, and primary olivine shows Mg# of 0.90–0.92. The pyroxenes are high-magnesian with low Al2O3 and Cr2O3. The bulk rocks have U-shaped normalized trace-element patterns with enrichment in LILE, L-MREE relative to HREE, and weak Pb–Sr peaks and Nb–Zr–Hf minima. Interstitial clinopyroxene exhibits V- and U-shaped normalized REE patterns with (La/Yb)N > 1 (Yb = 1.2–3 of chondritic values) and enrichment in fluid-mobile elements and Zr. HREE abundances of clinopyroxene can be simulated by 23–26% partial melting of depleted mantle starting at garnet-facies (6–8%) depths, followed by hydrous or anhydrous melting at spinel-facies depths L-MREE characteristics of clinopyroxenes can be simulated by further interaction of harzburgites with an island-arc basaltic melt in a supra-subduction environment. The association of hydrous secondary minerals in the Alag Khadny peridotites suggests their retrograde metamorphism at 1.6–2.0 GPa and 640–720 °C, similar to P–T conditions reported earlier for the spatially associated eclogites. This supports metamorphism of the Alag Khadny peridotites in a mantle wedge, followed by joint exhumation of peridotites and eclogites. Given the findings above and implying the regional geological background, we advocate for a sequential Neoproterozoic evolution the Alag Khadny harzburgites from (1) their formation by decompression partial melting in an Early Neoproterozoic or older spreading center of a mid-ocean or back-arc setting, and (2) refertilization by supra-subduction melts, followed by (3) Late Neoproterozoic–Early Cambrian hydrous-fluid metamorphism and juxtaposition with eclogites.

Funder

Ministry of Science and Higher Education of the Russian Federation

Council on grants of the President of the Russian Federation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3