In Situ Geochemical Evaluation of Retrograde Hydration Effects in the Peri-Siberian Forearc Mantle (Khara-Nur and Alag-Khadny Peridotite Complexes)

Author:

Karimov Anas A.12ORCID,Gornova Marina A.1,Belyaev Vasiliy A.1ORCID,Skuzovatov Sergei Yu.1ORCID,Medvedev Alexander Ya.1,Bryanskiy Nikolay V.23ORCID

Affiliation:

1. Vinogradov Institute of Geochemistry, Russian Academy of Sciences, Siberian Branch, 1A Favorskogo Str., 664033 Irkutsk, Russia

2. Institute of the Earth’s Crust, Russian Academy of Sciences, Siberian Branch, 128 Lermontova Str., 664033 Irkutsk, Russia

3. Physical Department, Irkutsk State University, 20 Gagarina Blvd., 664002 Irkutsk, Russia

Abstract

In order to assess the geochemical effects of retrograde metamorphic rehydration, fluid metasomatism, and the fluid-mobile elements (FMEs) budget in the case of oceanic and continental subduction, we report the petrography, bulk, and in situ LA-ICP-MS trace-element data for the two poorly studied ophiolites in the northern (Khara-Nur, Eastern Sayan, Russia) and central (Alag-Khadny accretionary wedge, SW Mongolia) parts of the peri-Siberian orogenic framing. Both complexes are relics of the ancient oceanic mantle, which was subjected to processes of partial melting, metasomatism, and retrograde metamorphism. Typical mineral assemblages include olivine + orthopyroxene + chlorite + tremolite ± secondary olivine (640–800 °C), olivine + antigorite ± secondary clinopyroxene (<640 °C), and olivine + chrysotile ± secondary clinopyroxene (<250 °C) and are stable at pressures up to 2 GPa. Hydration and partial serpentinization of mantle peridotites lead to tremolite formation after orthopyroxene, followed by olivine replacement by antigorite. Serpentine-group minerals (antigorite and chrysotile) were distinguished by Raman spectroscopy, and the contents of incompatible elements (mobile and immobile in fluids) in metamorphic minerals (tremolite, antigorite, and chrysotile) were examined in situ by LA-ICP-MS. The behavior of conservative HFSE (Zr, Nb, Ta, and Ti) and—in part—HREE does not distinguish between the two types (oceanic and continental) of subduction environments. Different patterns of FMEs (Cs, Rb, Ba, U, Sb, Pb, Sr, and LREE) enrichment in metaperidotites reflect variations in the slab fluid composition, which was primarily governed by the contrasting nature of subducted lithologies. The affinity of Alag-Khadny to the subduction of a continental margin is recorded by increased FME contents and selective enrichment by some moderately mobile elements, such as U, Th, and LREE, with respect to the oceanic-type subduction environment of Khara-Nur. Distinct patterns of FME enrichment in tremolite and antigorite from two complexes indicate different sequences of fluid-induced replacement, which was controlled by Opx composition. We demonstrate that evaluation of the initial composition of precursor minerals affected by multi-stage melting and melt metasomatism should be considered with care to estimate the differential fluid overprint and associated elemental uptake from subduction fluids.

Funder

Russian Science Foundation

Publisher

MDPI AG

Reference89 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3