Frequency Feature Learning from Vibration Information of GIS for Mechanical Fault Detection

Author:

Yuan YangORCID,Ma Suliang,Wu Jianwen,Jia Bowen,Li Weixin,Luo Xiaowu

Abstract

The reliability of gas insulated switchgear (GIS) is very important for the safe operation of power systems. However, the research on potential faults of GIS is mainly focused on partial discharge, and the research on the intelligent detection technology of the mechanical state of GIS is very scarce. Based on the abnormal vibration signals generated by a GIS fault, a fault diagnosis method consisting of a frequency feature extraction method based on coherent function (CF) and a multi-layer classifier was developed in this paper. First, the Fourier transform was used to analyze the differences and consistency in the frequency spectrum of signals. Secondly, the frequency domain commonalities of the vibration signals were extracted by using CF, and the vibration characteristics were screened twice by using the correlation threshold and frequency threshold to further select the vibration features for diagnosis. Then, a multi-layer classifier composed of two one-class support vector machines (OCSVMs) and one support vector machine (SVM) was designed to classify the faults of GIS. Finally, the feasibility of the feature extraction method was verified by experiments, and compared with other classification methods, the stability and reliability of the proposed classifier were verified, which indicates that the fault diagnosis method promotes the development of an intelligent detection technology of the mechanical state in GIS.

Funder

National Nature Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Study on Mechanical Vibration Characteristics of GIS Bus Misalignment;Journal of Physics: Conference Series;2024-07-01

2. Research on fault identification of high-voltage circuit breakers with characteristics of voiceprint information;Scientific Reports;2024-04-23

3. Gas-insulated switch-gear mechanical fault detection based on acoustic feature analysis using a multi-state pre-trained neural network;Measurement Science and Technology;2024-04-18

4. Research on Impact of Harmonics on Vibration Characteristics of GIS in Power Grid;2023 2nd International Conference on Mechanical Engineering and Power Engineering (MEPE);2023-12-29

5. GIS Internal Disconnector Fault Diagnosis Based on KPCA-ISSA-SVM Method;2023 5th International Conference on Smart Power & Internet Energy Systems (SPIES);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3