Online Active Set-Based Longitudinal and Lateral Model Predictive Tracking Control of Electric Autonomous Driving

Author:

Fan Wenhui,He HongwenORCID,Lu Bing

Abstract

Autonomous driving is a breakthrough technology in the automobile and transportation fields. The characteristics of planned trajectories and tracking accuracy affect the development of autonomous driving technology. To improve the measurement accuracy of the vehicle state and realise the online application of predictive control algorithm, an online active set-based longitudinal and lateral model predictive tracking control method of autonomous driving is proposed for electric vehicles. Integrated with the vehicle inertial measurement unit (IMU) and global positioning system (GPS) information, a vehicle state estimator is designed based on an extended Kalman filter. Based on the 3-degree-of-freedom vehicle dynamics model and the curvilinear road coordinate system, the longitudinal and lateral errors dimensionality reduction is carried out. A fast-rolling optimisation algorithm for longitudinal and lateral tracking control of autonomous vehicles is designed and implemented based on convex optimisation, online active set theory and QP solver. Finally, the performance of the proposed tracking control method is verified in the reconstructed curve road scene based on real GPS data. The hardware-in-the-loop simulation results show that the proposed MPC controller has apparent advantages compared with the PID-based controller.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Dead Reckoning Method Based on Neural Network Optimized Kalman Filter;2022 IEEE International Conference on Unmanned Systems (ICUS);2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3