A Normalized HLD (HLDN) Tool for Optimal Salt-Concentration Prediction of Microemulsions

Author:

Kittithammavong VirinORCID,Charoensaeng Ampira,Khaodhiar Sutha

Abstract

Optimal condition-based microemulsion is key to achieving great efficiency in oil removal. One useful empirical equation to predict an optimal condition is a hydrophilic–lipophilic deviation (HLD). However, the K constants of each surfactant should be the same to combine the HLD equations for the mixed surfactant. Recently, a normalized hydrophilic-lipophilic deviation (HLDN) was presented to avoid this limitation. This work sought to determine the phase behaviors and predict the optimal salt concentrations, using HLDN for the mixed surfactant. Sodium dihexyl sulfosuccinate (SDHS) as an anionic surfactant, and alcohol alkyl polyglycol ether (AAE(6EO4PO)) as a nonionic surfactant, were both investigated. Alkanes and diesel were used as a model oil. The results showed that AAE(6EO4PO) enforced both the hydrophilic and the hydrophobic characteristics. The Winsor Type I-III transition was influenced by the ethylene oxide, while the propylene oxide presence affected the Winsor Type III-II inversion. For the HLDN equation, the average interaction term was 1.82 ± 0.86, which markedly showed a strong correlation with the fraction of nonionic surfactant in the mixed systems. The predicted optimal salt concentrations using HLDN of SDHS-AAE(6EO4PO) in the diesel systems were close to the experimental results, with an error of <10% that is significantly beneficial due to the shorter time required for optimal determination.

Funder

Chulalongkorn University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3