Characteristic Curvature Assessment of Some Natural Surfactants for Chemical Enhanced Oil Recovery Applications in Nigeria

Author:

Gbonhinbor Jeffrey1,Obuebite Ann1,Kuradoite George1,Agi Augustine2

Affiliation:

1. Niger Delta University

2. Universiti Teknologi Malaysia

Abstract

Abstract Chemical enhanced oil recovery (CEOR) application of natural surfactants is based on potential interfacial tension (IFT) alterability and eco-friendly considerations. The reduced IFT is associated with microemulsion formation in relation to a surfactant’s characteristic curvature. Lately, surface activities of natural surfactants have gained interest in Nigerian laboratory studies with no attention given to their hydrophilicity/hydrophobicity. This research focuses on molecular weight determination, micelle formation, and characteristic curvature evaluation of readily available natural surfactants. Four plants that are known to possess relevant surfactant properties were selected for this evaluation. Freezing point dipping method was used to determine the average molecular weight of each surfactant. Critical micelle concentration (CMC) was ascertained by electric conductivity tests. Characteristic curvature was evaluated from microemulsion formulations of toluene and aqueous surfactant mixtures. Formulated aqueous surfactant mixture consists of a combination of selected natural surfactant and a reference surfactant. Sodium dodecylsulphate (SDS) was adopted as the reference surfactant throughout this work. The analysis was configured in line with the hydrophilic-lipophilic deviation (HLD) model set to 0. Results yielded average molecular weights of examined surfactants between 128.3 g/mol to 186.7 g/mol. Critical micelle concentrations values of 0.45 to 0.60 were derived for all natural surfactants. Estimated characteristic curvature values suggested hydrophobicity with values from 0.116 to 0.194. As a consequence, these natural surfactants possess a tendency to form reverse micelles due oleic phase attraction. Their low positive values make them suitable for lowering IFT in order to mobilise trapped formation oil.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3