Freeze-Drying Ethylcellulose Microparticles Loaded with Etoposide for In Vitro Fast Dissolution and In Vitro Cytotoxicity against Cancer Cell Types, MCF-7 and Caco-2

Author:

Abdellatif Ahmed A. H.ORCID,Aldhafeeri Mashari A.,Alharbi Waleed H.,Alharbi Fahad H.,Almutiri Waleed,Amin Mohammed A.,Aldawsari Mohammed F.ORCID,Maswadeh Hamzah M.ORCID

Abstract

The aim of this study was to improve the solubility of etoposide–ethylcellulose (ET–ETO) microparticles using the freeze-drying technique. Ethylcellulose (EC) microparticles loaded with etoposide (ETO) were prepared with different drug–polymer molar ratios of 1:1, 1:3, 1:6, and 1:20 by the solvent evaporation method. The size of the prepared microparticles was 0.088 µm. The results showed that the amount of ETO encapsulated into the microparticles was 387.3, 365.0, 350.0, and 250 µg/50 mg microparticles for microparticles with drug–polymer ratios of 1:1, 1:3, 1:6, and 1:20, respectively. The FT-IR spectra showed no chemical interaction between ETO and the polymer in the solid state. The results obtained from the dissolution experiment showed that the freeze-dried microparticles were stable in 0.1 N HCl (gastric pH) for 2 h. At pH 7.4, the ETO release was 60 to 70% within the first 15 min and approximately 100% within 30 min. Results from the application of different dissolution models showed that the equations that best fit the dissolution data for the ET–ETO microparticles at pH 7.4 were the Higuchi and Peppas model equations. The in vitro cytotoxicity assay of free ETO and freeze-dried microspheres prepared in this study with a drug–polymer ratio of 1:1 was performed in two mammalian cancer cell lines, MCF-7 (for bone cancer of the mammary organ) and Caco-2 (for mammalian epithelial colorectal adenocarcinoma). The results showed that the half-maximal inhibitory concentrations (IC50 values) for ETO and freeze-dried ET–ETO microparticles were 18.6 µM and 27.1 µM, respectively. In conclusion, freeze-dried ET–ETO is a promising formulation for developing a fast-dissolving form of ETO with a significant antiproliferative activity against the tested cell lines used in this study. It is a promising formulation for local duodenal area targeting.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3